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ABSTRACT 

This repor t  descr ibes  a thermodynamic analysis and FORTRAN IV 

program for  calculating the time dependent internal  a tmospheric  temper-  

a tu re  within a body which i s  c lose to the lunar surface.  The body may be 

of any shape and thermally insulated. 

the capacity to include heat releases inside the body, selective emissivit ies 

on the outer surface of the body, any orientation and position on the lunar 

su r face  and up to  five different temperature-dependent t he rma l  insulations 

The analysis and programs have 

disposed around the body surface.  

Approved 

c- f. <& 
C. E. Kaylbr,flh.D. 
Director , .  MecKanics and 

Propulsion Laboratories 

Approved 

Director  of Research 
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I . 

LIST OF SYMBOLS 

A Area of a tr iangle 
- 
A Cohvenient computational grouping of t e r m s  

Area of MOLAB outer surface A1 

Area  of moon within the view of a MOLAB 
triangle 

Am 

B Semi - empirical  constant which asses s es the 
effect of the inclination of a triangle on its heat 
t ransfer  coefficient 

C Colongitude of the sun at 00.00 GMT in  
selenocentric coordinates 

C 
Pg 

Specific heat at constant p r e s s u r e  of MOLAB 
inter ior  atmosphere 

Thermal capacity of the inter ior  of the MOLAB CV 

Em Emissive power of the lunar surface 

Emissivity (or  absorptivity) of a triangle 
undergoing the following thermal  radiations, 
respectively: at the tempera ture  of the tri- 
angle; at so la r  temperatures;  at lunar surface 
temperatures  

F 

Fims Fmi 

Ab solute temper  atur e 

Shape factor fo r ,  respectively: 6A1 to  lunar 
surface and lunar surface to  6A,  

Mean solar heat flux on lunar surface G 

Lunar gravitational acceleration gm 

h Heat transfer coefficient f rom triangle to  
MOLAB inter ior  atmosphere 

Thermal conductivity of insulation k 

kg 
Thermal conductivity ,of MOLAB inter ior  a tmos - 
phere 

V 



L 

Lmean 

I 

m 

P 

r m 

S 

t 

e 

Thickness of tr iangle insulation 

Mean length of the tr iangles 

Direction cosine in "x" direction 

Direction cosine in t'yl' direction 

Number of tr iangles defining MOLAB 

Nus s elt  number 

Rayieigh number 

Convenient computational parameters  

Direction cosine in "z" direction 

Number of points defining the MOLAB 

Rate of heat flow 

Reflectivity of the lunar surface to solar  
radiation 

Convenient computational parameter  

Time 

Cartesian coordinates 

Convenient computational constant 

Selenocentric latitude 

Coefficient of cubical expansion 

Angle between t r iangle  outward normal  and 
so lar  direction 

Angle between MOLAB fixed "x" axis and 
selenographic eas t  

vi 



x 

I- 

$ 

Selenocentric longitude 

Vis c osity 

Density 

Stefan- Bolt zm ann constant 

Per iod  of lunar cycle 

Inclination of tr iangle normal to ver t ical  

SUBSCRIPTS 

Those symbols having a single subscript a r e  identified by the following code. 

2 Refers  to solar directions in  lunar surface 
fixed coordinates (see Figures  4 and 6) 

g Refers  to MOLAB inter ior  atmosphere 

g ross  

n 

s 

Refers  to total  r a t e  of energy acceptance by 
MOLAB inter ior  atmosphere 

Refers to tr iangle outward normal  directions 
in  MOLAB fixed coordinates (see Figure 5) 

Refers  to solar  directions in MOLAB fixed 
coo r dina t e s 

Those symbols having three subscripts a r e  identified by the following code. 

1 s t  Subscript. Identification Symbol 

0 Identify by major symbol 

1 Refers to MOLAB outer surface conditions 

2 Refers to conditions at  center of insulation 

3 Refers to MOLAB inner surface conditions 

4 Refers to MOLAB inter ior  atmosphere conditions 

v i i  



Refe r s  to heat f l u x  through one triangular a r e a  

Refers  to random heat r e l eases  inside MOLAB 

Refers  to heat fluxes summed over every tri- 
angle 

U Refers  to heat fluxes pe r  unit t r iangle  a r e a  

2nd Subscript. Triangle number 

0 ___ ~ 6 L b  I I U I I I U G I  

i Refers  to any triangle,  "i" 

Tnd-epende.nt ef tr-zn-10 -37-1- A -  

3rd Subscript. Time number 

Independent of t ime 

Instant of MOLAB re l ease  on lunar surface 

Refers  to any t ime, I ' j l '  
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INTRODUCTION 

It has  been proposed to  send a manned mobile lunar laboratory 

to the moon in  advance of the eventual as t ronauts .  This vehicle, usually 

called the MOLAB, is to wait for a period of up to six months before the 

astronauts a r r ive .  While waiting on the moon, most  of the sys tems on 

the MOLAB will be  tes ted f rom earth and a number of scientific experi-  

ments will be  conducted. One of the c r i t e r i a  of the effectiveness of the 

instruments  which will perform these t e s t s  is whether their  ambient 

tempera ture  (i. e . ,  the cab interior tempera ture)  falls within cer ta in  

prescr ibed  limits. Consequently, a thermodynamic analysis of the 

MOLAB and its environment before it is launched is of the utmost im- 

portanc e. 

This report  is an  account of a simplified thermodynamic analysis 

of a n  a rb i t r a r i l y  shaped MOLAB. 

to  be the MOLAB cabin atmospheric tempera ture  and a method of calcu- 

lating this a s  a function of t ime i s  presented. 

s imple  for  brevity in calculation. Consequently, the simplifications a r e  

cardinal  points in the analysis and a r e  discussed in a section by them- 

se lves ,  namely, "Reduction of the Problem". 

The main dependent variable was chosen 

The analysis was kept 

1 



ANA LYSIS 

Reduction of the Problem 

The equations which define the heat fluxes a r e  much too compli- 

cated for  an exact theoret ical  analysis;  consequently, the analysis was 

oriented towards an approximate numerical  solution. 

The problem is amenable to  splitting into the following three  

sections : 

1. 

2. 

Determination of the outside wall temperature .  

Determination of the heat fluxes through the insulations and 

integration of these around the surface to determine the net 

heat flux into the cab inter ior .  

3. Integration, with respec t  to t ime,  of the net heat flux into 

the cab to  determine the t ime dependence of the cab atmospheric 

t emp e r atur e. 

For  exactness, all t h ree  sections need to  be solved simultaneously. 

However, it is possible to  make an  accura te  calculation of the outside wall 

temperature  independently of sections 2 and 3 .  This possibility a r i s e s  

because,  for practically all c i rcumstances,  the heat flux pe r  unit a r e a  

conducted from the outer skin through the high quality the rma l  insulation 

is ve ry  small  compared with the other heat fluxes flowing into the unit 

a r ea ,  e. g . ,  those due to  so la r  and lunar radiation. Consequently, omit-  

ting the heat leak through the insulation has  a negligible effect on a n  outer 

surface heat balance. 

at this point t o  discuss some fur ther  simplifications in which it is involved. 

While discussing the outer surface,  it is convenient 

A number of considerations suggested neglecting the conduction of 

heat around the surface.  This conduction around the surface var ies  con- 

s iderably in  magnitude depending, a s  it does,  upon the local tempera ture  

gradients and the thermal  res i s tance  of the metals .  



I '  The net effect it has upon the tempera ture  distribution is to  smooth 

it out and tecd to  make a l l  temperatures  equal. 

sections of the MOLAB, particularly near  noon and during the lunar night, 

many of the tempera ture  gradients a re  small and consequently surface 

conduction may be neglected. 

accura te  to calculate the surface temperature as if it were  adiabatic with 

respec t  to conduction. 

labors  . 

However, over large 

Thus, for  many conditions, it is sufficiently 

This allows an enormous reduction in  computation 

The heat fluxes which fa l l  upon a surface element of the MOLAB 

come f rom mainly three  sources:  the sun, the lunar surface,  and f rom 

other par t s  of the MOLAB. 

tions. However, the magnitude of these reflections rapidly falls  away and 

there  is only one of any consequence, this being f r o m  sun to  lunar surface 

to  MOLAB. Thus, the remainder  may be neglected. Fur thermore ,  for 

pract ical ly  all of the surface,  any surface element cannot s e e  any other 

p a r t  of the vehicle and if it does, it does so  at a sma l l  angle; thus, radiation 

f r o m  other par t s  of the MOLAB was a l so  neglected. 

requi red  to  be taken into account, then some definite shape of the body 

would have to be  specified; hence, the heat radiations incident on any 

sur face  element which a r e  utilized a re :  d i rec t  so la r ,  direct  lunar,  and 

so la r  ref lected f rom the lunar surface. 

mention that the lunar surface radiation and reflected solar  radiation f rom 

the lunar  surface a r e  assumed to  be coming f r o m  an  infinite isothermal  

flat plane, obeying Lamber t ' s  cosine law, within the view of the element. 

The justifications f o r  this a r e  as follows. 

land the MOLAB in  a mare .  

Fu r the rmore ,  even a t  the highest point on a MOLAB, for distances grea te r  

than about 400 yards ,  the greatest  radiation intensity in the direction of 

the MOLAB will only be of the order of 1% of the normal  radiation intensity 

at this  point, and thus lunar surface curvature ,  and indeed temperature  

var ia t ion,  may be neglected. 

There a r e  a l so  an  infinite number of reflec- 

If this radiation were  

At this point i t  is appropriate to 

Every  effort will be  made to 

Thus, the surface will be  reasonably level. 
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A further approximation was included when assess ing  the radiant 

heat fluxes incident upon any element. 

MOLAB's shadow upon the lunar surface was neglected. 

enforced by the lack of having a prescr ibed shape for  the vehicle. 

This was that the effect of the 

This was again 

Representing the shape of the surface of the vehicle was accomplished 

by allowing up to 32 points to  be used to descr ibe it. 

having a point number ascr ibed to  it, f o r m  60 triangles and each t r iangle  was 

descr ibed by the th ree  apex numbers,  taken in  any counterclockwise order  

w l ~ ~ : l l  viewed f r o m  the outside; mean emissivity of the MOLAB outer s u r -  

face a t  its own temperature;  mean absorptivity of MOLAB outer surface to  

lunar surface tempera tures ;  mean absorptivity of MOLAB outer surface to 

so la r  radiation; t he rma l  conductivity number (explained below); thickness of 

insulation between MOLAB outer surface and vehicle inter ior .  

These 32 points, each 

.-.I-. -- 

The thermal  conductivity number, mentioned in  the above l is t ,  

r e f e r s  to  a method of coding the insulations. The insulations a r e  allowed 

to  belong to  up to  five categories,  thermal  conductivities of which may  be  

functions of the linear average tempera ture  of the par t icular  insulation. 

The thermal  conductivity number r e fe r s  t o  the insulation backing this 

par t icular  triangle. 

The equation which defines the tempera ture  distribution through 

the insulation was a l so  rigorously simplified. 

was that the temperature  distribution was always l inear  with distance 

through the insulation. 

period of the lunar cycle for  many circumstances i t  is sufficiently accurate.  

The accuracy becomes l e s s  as the thermal  diffusivity decreases .  

A fundamental assumption 

This is clear ly  never  t r u e  but because of the la rge  

The transport  of the heat into the cab  inter ior  is predominantly 

one of natural  convection; radiation being negligible because the temper-  

a ture  variation throughout the cab i s  small. However, no data exists f o r  

the calculation of natural  convection with the boundary conditions pertaining 

4 
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in the problem. Consequently, it was decided to use  the flat-plate relation- 

ships and amend them somewhat in  an effort to make them coincide with the 

realities of the problem. 

Inherent in  most  f r e e  convection analyses is a re l iance upon the 

Rayleigh Number, Ra, which is 

This dimensionless variable i s  f i rs t  utilized to determine which regime 

of heat t ransfer  is taking place and secondly in  evaluating the magnitude of 

the Nusselt Number. However, the temperature  difference, A F ,  is usually 

a dependent variable and some sort  of i terative process  must  be utilized to 

solve the problem. 

Pre l iminary  calculations indicated that most  of the heat t ranspor t  

would occur under laminar flow conditions; thus i t  was decided to  stand- 

a rd i ze  for  all tr iangles on the laminar flow relationships. 

Flat-plate analysis suggests that laminar flow heat t ranspor t  is 

cor re la ted  by a formula of the form 

1 - 
N ~ J ~  = constant X N R ~ ~  . 

Expanding the dimensionless te rms ,  N N ~  and NRa, and transposing this 

equation gives 

The boundary conditions of the MOLAB tr iangles  have no easi ly  

defined distance, L, f rom the leading edge. To overcome this discrepancy, 

an  attempt was made to  utilize a !'mean" length. 

fourth root of the length is utilized, the heat t r a n s f e r  coefficient is re la -  

t ively insensitive to  variations i n  "L". 

Fortunately, because the 

Thus, using a length of 0. 79 f t  

5 



It was mentioned ea r l i e r  that  a number of t e s t s  will be  made with 

instruments  inside the MOLAB. 

heat. 

solving a heat balance for the device simultaneously with the other heat 

fluxes. This complication was avoided by specifying that the r a t e  of heat 

re lease  f o r  all devices must  be known functions of t ime. Thus, the g ross  

heat addition to the cab inter ior  is the summation of the net heat flux f rom 

the lunar environment and whatever heat is re leased  internally. 

These devices will naturally dissipate 

An exact calculation for the r a t e  of heat r e l ease  would requi re  

allows a maximum e r r o r  of only 2570 over a range of actual lengths f r o m  

0. 25 f t  to 2. 0 f t .  

The "constant" i n  the expression for  the Nusselt Number depends 

upon the inclination of the tr iangle and usually upon whether it is heated 

o r  cooled. 

other than at  90" or 0" to  the ver t ical  a r e  meager ;  a l so  much of i t  is 

difficult to apply in a systematic manner.  

the constant at inclinations of 90" nr 0"  t o  +L- L ~ X  vert ical  were  used to 

l inearly interpolate the values fo r  other inclinations. 

assumptions and a knowledge of the instantaneous inter ior  cab temper-  

a ture ,  it is  thus possible to  compute the r a t e  of heat flow through a 

tr iangle.  

gaseous properties which a r e  functions of tempera ture  a r e  taken to  be 

constant at some "mean" atmospheric temperature .  

is again particularly accurate  because these propert ies  a r e  only introduced 

as fourth root products. In par t icular ,  the coefficient of expansion, y ,  

which i s  the rec iproca l  of the absolute tempera ture  for  a perfect gas,  was 

held constant at the value determined by the internal atmospheric tempera-  

t u re  chosen at the s t a r t  of the calculations. 

of the triangles then gives the net r a t e  of heat flow into the cab. 

Data for  natural  convection upon plates which a r e  inclined 

Consequently, the values of 

With the above 

The complication of this la t ter  calculation is reduced i f  those 

This simplification 

A simple summation over a l l  

The dispersion of this heat flux inside the cab is supposed to  be  

uniform such that the ent i re  contents a r e  at a uniform tempera ture  and 

6 



suffer a uniform ra t e  of temperature  increase.  The thermal  capacity of 

this essentially constant volume container is a l l  that is required to bring 

about the ultimate differential equation 

It is c lear ly  impossible to  solve this differential  equation using analytic 

methods; consequently, numerical  integration was utilized. 

Development of the Equations 

The object of the analysis is to determine the inside cab temperature ,  

F4oj, as a function of time. 

F40j, it is easiest  to work i n  roughly the r e v e r s e  order  of the solution a s  

follows. 

To demonstrate the analysis required to  obtain 

The temperature ,  F w j r  is evaluated by solving the differential 

equation (la) which is 

As will  be  c l ea r  f rom what follows, t he re  was no possibility fo r  an analytic 

solution and a numerical  solution was utilized. The f o r m  of the differential 

equation and boundary conditions suggested the use of the Runge-Kutta 

method. 

method which automatically chooses the maximum t ime s tep which the 

accuracy  bounds will allow and a small amendation of their  method was 

utilized. The derivation of this equation and the evaluation of C, has been 

explained i n  another section, "Reduction of the Problem". However, i t  is 

necessa ry  to  demonstrate the method of evaluating the function of time 

hgross. 
cab, htoj, and the heat re leases  by instruments ,  e tc . ,  hroj. 

Two papers  by Miller and Miller4* ', demonstrate a Runge-Kutta 

The t e r m ,  hgross, is the summation of the heat flux into the 

7 



The heat re leases  inside the cab, hr0j, occur whenever the 

opera tors  of the MOLAB decide to  activate any devices, and consequently 

rank as input data. 

htojt 
heat passing through a l l  the t r iangles ,  hnij, thus 

The heat fluxes passing into the cab f r o m  the exter ior ,  

This flux is the summation of the a re  really the c rux  of the problem. 

NTRI 
\- 

As it is most convenient to  evaluate the heat fluxes through each triangle 

in  t e r m s  of the unit a r ea ,  we have 

- qnij 
huij - ~ , i ~  

At this stage it is not necessary  to  evaluate each of the var iables  explic- 

itly, but only to demonstrate that sufficient simultaneous equations a r e  

possible to  solve for the appropriate unknowns. 

a r r i v e  at the following: 

Thus, it is possible to 

Heat Flux Through Insulation 

Heat Flux F rom Inner Wall 

The r ma 1 Conductivity Tab le s 

koij = koij[ (F I i j  + F3 i j ) / 2 I  

that i s ,  an input table of koij ve r sus  tempera ture .  

8 
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Evalution of Nusselt Number 

Boio 

where 

- - 
lr lr JI+ TT 0 J I - p o  lr 0 4 J - r  2 0 q L T > O  

4J 0.64 - - 
lr 1 olr 

0.68+ 0 . 2 5  t - 0 0.684~ 0 . 9 3  -7 0. 54 t- ' 
1 olr 

and Boio is determined f r o m  the following table. 

when nS  2 0 and cos E < 0, neglect ( )i , and when n S <  0, neglect 

( )ii and ( )i 

The derivations of Equations 4, 5, 6, and 7 are  t r ivial  and can b e  

done by inspection. 

is r e se rved  for  Appendix 11. 

However, the derivation for Equation 8 is lengthy and 

The solution of this system of equations was most  easi ly  accom- 

plished by a rearrangement  to  give the following: 

9 



when Flij - F40j < 0, then S = 1; and when F l i j  - F40j > 0, then S = -1. 

Solution of Equation 9 ( s e e  Subroutine CALF3) for  the variable F 3 i j  

was accomplished by a systematic t r i a l  and e r r o r  method. 

normal  method of i teration was not used because the wide variation in  the 

parameters  gave trouble in  convergence. 

The m o r e  

10 



THE FORTRAN PROGRAM 

Description of P rogram Routines 

The program consis ts  of a MAIN calling routine and eight 

subroutines. 

follows : 

A brief description of the purpose of each routine is as 

MAIN - The Calling Routine 

The functions of this calling routine a re :  

1. Read f r o m  the c a r d  reader the input information for  t l i r :  

integration routine, RUNGKT 

2 .  To give control to  that routine 

3 .  Later ,  to  wr i te  an  end of job message 

4. To terminate  the program. 

RUNGKT 

This is the basic  Runge-Kutta integration which advances f rom the 

Subroutine DERIV is called b y  RUNGKT to calculate boundary conditions. 

the differential a t  any point in  t ime and Subroutine RUNGKT adjusts the 

time s t ep  s ize  to  the maximum which the tolerances and differential 

equation will allow. 

printed.  

References  4 and 5. 

It a l so  fixes the interval  a t  which the output data is 

A comprehensive description of this subroutine is given i n  

DERIV 

This calculates the differential given in  Equation l b  at any point 

i n  t ime.  To do this it calls  the following subroutines. 

1 1  



BOUND 

This sets up tables of MOLAB outer surface tempera ture ,  F d I J ,  

f o r  b o  different t imes  over  a cycle for eac.11 triangle.  

CALF3 

This calculates the MOLAB inner wall temperatur t :  l o r  c i l c . 1 1  

‘The method used  is systematic, t r i a l  L L I I ~  tr iangle using Equation 9.  

e r r o r .  

SUR. F1  

This interpolates inside the tables se t  up in  BOUND to f i i id  tl it:  

outer surface tempera ture  f o r  each triangle,  FlIJ, a t  a n y  instant. 

C OND 

This interpolates i n  the input data of ther ina l  conductivity against  

t empera ture  for each insulation a t  any tempera ture .  

HEAT 

This selects which points in the table of TR and QR the instant 

of t ime falls between and then i t  l inearly interpolates  betwt:c.n t l i c s e  v c l l u c ~ s  

to find the value of QR a t  that t ime. 

ARCOS 

The function ARCOS is not par t  of the routine. C)I~ d r i  IBM 7040. 

Consequently this subroutine is used to  calculate AlZ(;OS and  i t  eiicil>les 

the angle between the outside nornidl to  a t r iangle  aiid the vertical  to be 

determined f r o m  a knowledge of the ver t ical  direct ion cosine. 



1 .  Input Data 

Variable Card Column 

NCI 001 7 - 9  

P 

T P  

TE 

El 

E2 

001 10 - 19 

001 2 0  - 2 9  

001 30  - 39 

001 40 - 49 

001 50 - 59 

LAM 002 1 - 1 0  

BETA 0 02 11 - 20 

C 002 21 - 30 

THETA 0 02 31 - 40 

Definition of Variable 

The number of t imes integration will be 
forced at a minimum s tep  s i ze  before 
the routine will be stopped for  noncon- 
vergence. (Approx. 10) 

The maximum allowable s tep  s i ze  in  
hours .  
necessary for  the run but it does not 
affect the accuracy. Optimum value 
depends on i r regular i t ies  in  the differential 
equation (e. g. , 8. 0 hours). 

This affects the machine t ime 

The print  interval ( in hours). 
Cab Temperature  a r e  printed out at t imes 
T I  + n T P  where n is an integer.  
does not affect the computations unless it 
is less than P; if  this happens P is 
assumed to equal T P  (e. g . ,  8. 0 hours). 

Time and 

This 

The value of t ime in hours f rom 00.00 
GMT at which the program is t o  be 
terminated. 

The lower bound for controlling s tep  size.  
E l  is dimensionless (e. g. , 1 0'4 to 1 O m 6 ) .  

The upper bound for controlling s tep  size.  
E2 is dimensionless (usually = 100 X El ,  
i. e . ,  to lo-*)).  

Longitude of MOLAB on the moon in  
degrees,  (A).  

Latitude of MOLAB on the moon i n  
degrees, (p ) .  

The colongitude of sun in  selenocentric 
coordinates a t  00. 00 hours,  GMT in  
degrees, (C). 

Angle between "x" axis of MOLAB and 
Lunar East  in degrees,  (0) .  

13  



Variable Card Column 

cv  002 41 - 51 

RMTS 

G 

T1 

003 1 - 10 

003 11 - 2 0  

003 21 - 30 

F401  003 31 - 4 0  

DTEMP 003 41 - 50 

TCT 0 04 1 - 10  
through 11 - 20 

043 21 - 30 
31 - 4 0  
41 - 50 

KG 044 1 - 10 

CPG 044 11 - 2 0  

MUG 044 21 - 30 

GM 44 31 - 40 

RHOG 44 41 - 5 0  

co 45 
through 

76 
1 - 10 

11 - 2 0  
21 - 30 

Definition of Variable 

Thermal  capacity of complete cab con- 
tents in BTU/"F ,  (Cv). 

Reflectivity of lunar sur face  to  so la r  
heat (dimensionless ), ( rm). 

Solar constant i n  BTU/ft2 -h r  (normally 
4 4 2 ) ,  (G). 

The init ial  value of T in  hours f r o m  
00. 00 GMT at which F 4 n l  is known, 

(too 1). 

Cab temperature  in  OR at t ime T1 hours ,  
(F40 1 ) -  

Temperature  increment in  "R for the 
the rma l  conductivity tables. 

Tables of thermal  conductivity (BTU/ 
ft-hr-" R)  versus  temperature  increment 
(DTEMP) for various mater ia l s .  Blanks 
substituted i f  no mater ia l s .  

"Mean" the rma l  conductivity of cab 
atmosphere in  BTU/ft-hr-"R (e. g . ,  for  
oxygen at 5 psia) ,  (kg). 

"Mean" specific heat at constant p r e s s u r e  
of cab atmosphere in  BTU/lb-OR, (Cpg). 

"Mean" viscosi ty  of cab atmosphere in 
lb/ft-hr, (pg). 

Lunar gravitational accelerat ion at 
moon's su r f ace  i n  f t / h r  , (gm). 2 

Density of cab atmosphere in  lb / f t3 ,  (pg ) .  

Coordinates of point numbers in  inches.  
Points l is ted in  the o rde r  in  which 
numb e r ed. 
l I x "  

l l z l l  
"Yl'  

14 



Definition of Variable Variable Card Column 

77 
through 

136 

All data associated with each triangle 
completely l isted on one c a r d  pe r  
triangle as shown below. 

JJ 
J K  
J L  

1 - 3  
4 - 6  
7 - 9  

10 - 19 

20 - 29 

30 - 39 

41 

42 - 51 

Point numbers of tr iangle,  taken in  any 
counterclockwise order  when viewed 
from the OUTSIDE 

EIOT 1 Mean emissivity of MOLAB outer sur face  
at  its own temperature ,  (elotl). 

EIOTM Mean absorptivity of MOLAB outer surface 
to lunar sur face  tempera tures ,  (elotm). 

EIOTS Mean absorptivity of MOLAB outer surface 
t o  solar radiation, ( e  lots ). 

TCN Thermal  conductivity number. This 
selects which of the five materials is 
relevant for  this triangle. 

L Thickness of insulation for  this t r iangle  
in  inches,  (Loio). 

137 
through 

116D 

Data describing heat fluxes released i n  
MOLAB cab. 
a r e  required to  descr ibe the heat fluxes, 
place the number -10.0 i n  columns 1-10 
after the last data card  and omit the 
remainder of the cards .  

Note i f  l e s s  than 1024 points 

TR 

QR 

1 - 10 

11 - 20  

Time at which heat is re leased  in  hours  
from 00. 00 GMT, ( tr)  

Rate of heat r e l ease  in MOLAB inter ior  
in  BTU/hr ,  (Groj). 

Note a t  all values of the t ime the heat 
fluxes must  be uniquely defined. 
TR = 110.0, QR = 0.0, and TR = 110.0, 
QR = 50. 0 to descr ibe  a s tep input. 
use TR = 110.0, QR = 0. 0, and TR = 110. 001, 

Thus avoid 

Instead 

QR = 50. 0. ~ 

15 



Output Data 

The following lists the output in  the order  in  which it appears .  

When the output symbols o r  units a r e  different f rom those given in  the 

list of symbols or  the input data, then a correspondence between p re -  

viously used symbols and units is given. 

Tabulated Inputs 

NCI 

PRINT INTERVAL - T P  

TERMINATION TIME - T E  

LOWER ERROR LIMIT - E l  

UPPER ERROR LIMIT - E2 

C 

THETA - e 

c v  

RMTS - rm 

G 

T1 

DTEMP 

THERMAL CONDUCTIVITY TABLES 

Each mater ia l  is l isted with a subheading. The the rma l  con- 

ductivities (in BTU/ft-hr-OR) a r e  then l is ted f r o m  0"R at intervals  of 

DTEMP from left  to  right,  row b y  row. 

16 



KG 

CPG 

MUG 

GM 

RHOG 

F4 - F401 
ALPHA - (Y 

INPUT TABLE OF CABIN HEAT RELEASES 

The two columns of figures represent  (as shown on the output) 

the t ime in  hours  f rom 00. 00 GMT and, on the same  row, the respective 

instantaneous heat re lease  in  BTU/hr inside the cabin. 

Calculated Results 

The two columns of figures (as shown on the output) give the t ime 

i n  hours  f rom 00.00 GMT at which the cab inter ior  tempera ture  (which is 

printed on the same  row in  degrees Rankine) has been calculated. 

frequency and t imes of printing are controlled b y  the input data. 

The 



FORTRAN I V  PROGRAM L I S T I N G  OF MAIN PROGRAM 

READ ( S , ~ ) N C I ~ P I T P , T E , E ~ ~ E ~  

N = l  

184 

1FITP.l.T.P) P-TP 

I F  ( E 1 o L T . E Z )  GO TO 4 

& € = E l  

E1=E2 

E Z = E E  

4 CONTINUE 

1 FORMAT ~6XI3,SFlOoO) 

WRITE( 6 9 3 )  N C I , P r T P , T E p E l r E Z  

3 FORMAT ( 6H N C I = I 3 / / 2 0 H  MAXIHUM STEP SIZE=r 

l E l b o l O J / 1 7 H  P R I N T  I N T E R V A L = E 1 9 o 1 0 / / 1 9 H  TERMINATION T I H E = E 1 7 * 1 0 / /  

220H LOWER ERROR L I H I T = E 1 6 o 1 0 / / 2 0 H  UPPER ERROR L I H I T ~ E 1 6 m l O )  

CALL RUNGKT ( N ~ I , N C I , P , T P , T E , E ~ ~ ~ ~ )  

WRITE 1 6 9 2 )  

2 FORHAT ( l S H l + * E N D  OF JOB++)  

CALL E X I T  

STOP 

END 

18 
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C 

C 

C 

t 

c; 

C 

C 

C 

C 

C 

c 

FORTRAN I V  PROGRAM L I S T I N G  OF SUBROUTINE RUNCKT 

SUBROUTINE R U N G K T ( N I I , N C I , P ~ T P I T ~ , E ~ ~ E ~ )  

PREPARED BY BEN t i  KAVANAUGH J R  

152 SECOND ORDER RUNGE-KUTTA 

1-3 T H I R D  ORDER RUNGE-KUTTA 

1 x 4  FOURTH ORDER RUNGE-KUTTA 

STORAGE f l = E  =t l  

F2=YHAFl TEMPORARY STORAGE REQUIRED= 

F 3 = Y F U L L  DIMENSION OF F ARRAY= 

F4=YSAVE N + ( 3 + 1 )  

F 5=DY SAVE WHERE N=NO OF D E R I V A T I V E S  

F6-22 AND I=ORDER OF INTEGRATION 

E7=23 PROCESS 

O I H E N S I O N  Y ( 2 5 ) , D Y ( 2 5 l r F ( 1 7 5 )  

CALL D E R I V  ( Y t l ) ,  D Y ( l I r T 1  

N C I I  = 0 

01 = TP 

TR = T 

NK3 = 1 

"1 = 1 

NU = 2 

H = P  

01  = P 

101 13 = T 

NK2 = 2 

M = O  

19 



FORTRAN I V  PROGRAM LISTING OF SUBROUTINE RUNGKT 

GO TO 200 

1 0 3 M = M + 1  

GO TO ~110p120,130J pM 

110 DO 111 K 1 p N  

K 1  = K + N + N 

1.. C * Y . *  
A L A  r t n i i  Y i K i  

112 NK2 = 3 

T = T S  

I F  ( A B S  (H/P)-o0000010 1 115r115p118 

115 W R I T E ~ 6 ~ 1 1 6 ) I N O f X ~ T T ~ Y ~ I N D E X l  

116 FORMAT(1HO~///SXpI2p25HOOES NOT CONVERGE AT T = pF14a8p25HCURRENT 

lUALUE OF Y(I) I S  pE15o8///1 

IF 4 NC I-NCI I 1901 r 901 p 117 

117 N C I I  = NCI I  + 1 

NK3 = 2 

118 OT = - 5  H 

N K l  = 2 

H = l  

GO TO 102 

120 NK2 = 4 

DT = a 5  H 

GO TO 102 

130 DO 131 K = 1 p N  

K1 = K + 2*N 

F I K )  5 ( Y ( K ) - F ( K 1 ) ~ / ( 2 . ~ ~ 1 - 1 0 )  

L 

20 



FORTRAN I V  PROGRAM LISTING OF SUBROUTINE RUNGKT 

Y ( K )  = Y ( K )  + F(K1 

I F  (ABS ( f  t K ) ~ - o 0 0 0 0 1 ) 1 3 9 ~ 1 3 9 ~ 1 4 0  

139 F I K ) =  00 

GO TO 131 

140 f ( K 1  = ABS ( F ( K ) / Y I K ) )  

131  CONTINUE 

GO TO { 142,141) NK3 

141  NK3 = 1 

GO TO 1335 

142 E = F ( 1 )  

INDEX = 1 

I F  (N-11133511335, 1315 

1315 DO 133 K = 2,N 

I F  ( E-FN K )  1 132 , 1339 133 

132 INDEX K 

E = F I K )  

133 CONTINUE 

1335 IF t €-El 1134, 135, 135 

134 H = H + ti 

1346 OT = H 

GO TO 101 

135 IFtE-E2)1345~1345,136 

136 DO 137 K = 1 , N  

K l = K + N  

K2 = K 1  + N 
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FORTRAN I V  PROGRAM LISTING OF SUBROUTINE RUNGKT 

137 F ( K 2 )  h F ( K 1 )  

NK1 = 2 

138 H = oS*H 

GO TO 1 1 2  

200 GO TO ( 2 0 3 , 2 0 4 )  ,MU 

203 H = A M # X 1 (  HeH2 1 

MU = 2 

204 I F (  P - H )208,209,209 

208 H = P 

209 12  TP - T 

IF( ABS (T2)  - e l € - 0 8  1 21292109210 

210 H2 = ABS (T2 )  

H3=QR( TI 1) 

H2=AHI N L (H2 H3 1 

IF( TR - * lE -05  1 216,211,211 

211 IF(A6S ( T 2 / T P ) - o 0 0 0 1  1 212,213,213 

212 T A V  = f 

T = TP 

GO TO 300 

213 I F t H  -H2) 215r215r214 

214 MU = 1 

H = H2 

215 O T  = H 

GO TO 102 

216 IF( A B S (  T2 / D I  1 -. *0001 1 212,213,213 

22 



FORTRAN I V  PROGRAM L I S T I N G  OF SUBROUTINE RUNGKT 

300 CALL P R I N T  ( Y ( l ) , D Y ( l ) * T )  

I F ( A B S 4 T P  - T E )  - - 5 *  ABS( 01 1 1 9 0 1 , 9 0 3 , 3 0 1  

301 TP = TP + D I  

T = T A V  

DT = H 

GO TO 209 

102 I F (  DL 1 l t 8 r 8  

7 D T = -  DT 

8 DTT = 0 5  it DT 

J = O  

9 J s J + 1  

GO TO 4 1 0 ~ 1 1  1 ,  NK1 

10 CALL OERIV ( Y ( l ) r  D Y ( l ) r T )  

GO TO 12 

11 N K l  = 1 

12 DO 35 K l z  1,N 

K 6  = K 1  + 3 N 

K 7  = K 6  + N 

KZ = K 7  + N 

K 3  = K 2  + N 

K 4  = K l  + N 

GO TO 1 1 7 r 1 4 ~ 1 5 , 1 3  ), N U  

13 F (K1)  = D Y ( K 1 )  

F ( K 4 )  = Y ( K l )  

GO TO 17 

23 



FORTRAN I V  PROGRAM LISTING OF SUBROUTINE RUNGKT 

14 F(K6)  = Y(K1) 

F(K7)  = DY(K1) 

GO TO 16 
I 

15 DY(K1) = F(K7)  

24 



FORTRAN XV PROGRAM L IST ING OF SUBROUTINE RUNGKT 

33 Y ( K 1 )  = F(K4)  + (F(K1)  + F ( K 3 )  + 4 0  F(K2) ) * .33333333 

GO TO 35 

34 Y ( K 1 )  = F(K4) + 20* F(K3)  

35 CONTINUE 

NK2 = 1 

GO TO ( 5 0 r 6 1 , 6 2 ~ 1 0 3 ) t J  

50 GO TO 4999,56r57rS7)#1 

6 1  GO TO 4 9 9 9 , 1 0 3 ~ 5 7 r 9 ) r I  

62 GO TO (9999999,103957)r f  

56 T = DT + T 

GO TO 9 

57 T = T + DTT 

GO TO 9 

999 CALL DUMP 

901  RETURN 

END 

25 



FORTRAN I V  PROGRAM L I S T I N G  OF SUBROUTINE P R I N T  

SUBROUTINE PRINT f E F 4 , 0 F 4 , T I M E  1 

WR I TE ( 6 9 1) TIME , EF4 

1 FORMAT(/2OX,lZHTIME(HRS~) =F11.4,15X,27HCAB I N T E R l O H  TEHP.(DEGoR) 

2 ~ F 9 . 4 )  

RETURN 

E N 0  

26 



FORTRAN I V  PROGRAM L I S T I N G  OF SUBROUTINE OERIV 

SUBROUTINE DERIV (EF4rDF4,TIME) 

REAL KG ,MUG L 9 L A M  

INTEGER TCN 

COMMON L A M , B E ~ A I C , T H E T A , C V , R M T S , ~ , S I G  ,ALPHA,DT,OTEHP 

COMMON TN~TCT(4OrS),T~60,61~~AREA(60),TCN(60) 

DIMENSION L f 6 0 ) r X N N ( 6 0 )  

I F  f f B H ~ E Q ~ 6 0 2 )  GO TO 7 

ISM=602 

REA0 ( 5 9 1 1  L A M ~ B E T A , C , T H E T A , C V ~ R M T S , G I T l r F 4 O l ~ D T E M P ~ T C T  

1 FORMAT (5F10.5) 

WRITE (6,2)tAM,BETA,C,THETAi CV,RMTSsG, T l ,  DTEMP 

2 FORMAT (8HlLAMBDA=E16o8,6H BfTA*Elbo8,3H C=E16o8,7H THETA=E16o8, 

l / f  4H CV=E16e8,6H RMTS=E16o8,3H GsE16.8, 

2 / / 4 H  T l s E  16.8 , 7H DTEMP E 16.8 

3 / / 2 8 H  THERMAL CONDUCTIVlTY TABLES/ / )  

DO 15 IN=l*S 

15 WRITE(6rl4)IN,(TCT(IZ,IN),IZ=~,4O) 

1% FORMAT ( / / 10H MATERIALI3 / / (5€20.8)  1 

READ ( 5 , l l  KG,CPG,MUG,GH,RHOG 

A L P H A = S Q R T ( S a R T ( K G ~ K G ~ K G ~ C P G * G M * R H O G ~ R H O G / ( M U G ~ F 4 0 1 )  ) )  

WRITE ~ ~ , ~ ) K G I C P G ~ H U G , G M ~ R H O G I F ~ ~ ~ , A L P H A  

3 FORMAT ( / / / S X 4 H  KGsE16-8,SH CPG=El6o8,5H MUGfE16.8// 

1 4H GM=E16o8,6H RHOG=E16o8,4H F b ~ E 1 6 o 8 , I H  ALPHA=E16,8) 

TNz708.726 

OT= 1 l o  8 121 

27 



FORTRAN I V  PROGRAM LISTING OF SUBROUTINE DERIV 

NTRI-60 

TIHE=Tl 

NTRI=NTRI+l 

5 Q T = O o  

CALL BOUND (AREA(l)rXNN(l)rL(l)I 

I = 1  

EF4=FQOL 

6 CONTINUE 

CALL BOUND (AREA(I)tXNN(I),L(I)) 

L( I)=L'a 11/12. 

7 CONTINUE 

IF (TCN(1)oEQoOI GO TO 16 

EFl=FlZStTIHE) 

EL=L(I) 

EF3rF3II,EFl,EF4,XNN(I)tETCtEL) 

ETC=TCdI,~EFl+EF3)/2o) 

QDU=ETC+(EFl-EF3)/EL 

QDN=QDU*AREA(I) 

QT=Q J+QDN 

16 I=I+l 

IF(1,EQoNTRIo ORoIoEQo60) GO TO 8 

IF1IST o E Q o 1 2 )  GO TO 7 

GO TO 6 

8 QT=QT+QR(TIHEvOI 

DF4=QT/CV 

28 



FORTRAN I V  PROGRAM LISTING OF SUBROUTINE OERIV 

9 FORMAT ( / / 4 H  Q T = E 1 6 * 8 , 5 H  D F 4 = € 1 6 o 8 ~ 6 H  TIHE~E16.8,4H F 4 = € 1 6 o 8 )  

I S T = l Z  

I = l  

ALPHAsSQRT(SQRT(KG*KG*KG*CPG*GM~RHOG*RHOG/(HUG*EF4) 1 )  

Q T = O o  

RETURN 

END 

29 



FORTRAN IV PROGRAM LISTING OF SUBROUTINE BOUND 

SUBROUTINE BOUND (AtXNNtL) 

COMMON LAMD,BETADgCD,THEDwCVtRMTS tGt S I G t  ALPHA, Qt  DTEMP 

COMMON T N ~ T C T ( 4 0 , 5 ) ~ T ( 6 0 ~ 6 1 ) t A R € A ( 6 O ) ~ T C N ( 6 0 )  

DIMENSION FAR( 61) 9 TBET (61) 

REAL LtKBARwLKH 

REAL LAMRpLAM0,LAMOtLAMS 

INTEGER TCN 

IF(IBMoEQ.602) GO TO 11 

IBM=602 

ITRi=O 

PI = 301415926536 

676 FORMAT(7FlOoO 1 

DO 70 I 1  = 1961 

70 fAR(II)=FLOAT~II-1I/6Oo 

666 FORMAT(2F10.01 

TBET( L I Z  3900 

TBET(  2 ) =  3890 

TBETf  3 ) =  387.  

TBET(  4)=38305 

TBET( S)=38OoO 

lBET( 6I-37600 

TBET(  7)=371.0 

T B E T (  81-36100 

TBETf  9)=353oO 

TBET( 10)=341-0  

30 



FORTRAN I V  PROGRAM LISTING OF SUBROUTINE BOUND 
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FORTRAN I V  PROGRAM LISTING OF SUBROUTINE BOUND 

T B E T ( 3 6 ) t  91.0 

T B E T 1 3 7 ) =  91.0 

T B E T ( 3 8 J s  91.0 

T B E T ( 3 9 ) z  90.0 

T B E T ( 4 0 ) =  90.0 

T B E T ( 4 L ) =  89.0 

T B E T ( 4 2 ) =  89.0 

T B E T ( 4 3 ) =  88.0 

T B E T ( 4 4 ) =  88.0 

T B E T ( 4 5 ) =  87.0 

T B E T ( 4 6 ) =  8700 

TBET (47  1 =2 14 0 

TBET(  48 1 r259.0 

TBET 4 4 9 ) = 2 9 1  e 0  

TEE T I50 1 =312 . 0 
TBE T {  51  1 =3300 0 

T B E T 1 5 2 ) = 3 4 2 = 0  

TBET [ 5 3 ) = 3 5 3 . 0  

TBET f 5 4 )  =361 . 0 

TBET ( 55~=3?000 

TBET (56) ~ 3 7 7 . 0  

TBET( 57) r380.0 

TBET( 5 8 ) = 3 8 5 . 0  

T B E T ( 5 9 ) = 3 8 8 . 0  

TBET(: 60)  = 3 9 0 . 0  

32 



FORTRAN I V  PROGRAM L I S T I N G  OF SUBROUTINE BOUND 

T B E T ( 6 1 ) = 3 9 0 o 0  

S IG-o1718E-8  

D I M E N S I O N  C O ( 3 9 3 2 )  

READ (5 .13)  CO 

13 fORMAT ( 3 F I O o S I  

RETURN 

11 I T R I = I T R I + l  

R E A D ~ 5 ~ 1 2 ~ J J ~ J K ~ J L ~ E I O T l ~ E I O T M ~ E I O ~ S ~ T C N ~ I T R I ~ ~ L  

12 FORMAT ( 3 1 3 , 3 F l O o 5 ~ 1 2 , F 1 0 . 5 )  

I f  I T C N t I T R I l ~ E Q o O l  RETURN 

X X 1 4 0  f 1 9 J J 1 

X X Z = C O I  1 9  J K )  

XX3=COi( 1 t JL 1 

Y Y 1 4 01 2 9 J J 1 

Y Y Z = C 0 1 2 r J K I  

Y Y 3 - C O t 2 9 J L I  

Z t l ~ C O l 3 9  J J 1 

2 Z 2 4  0 4 3 9 J K 1 

Z Z  3 4 0 4  3 9 J L 1 

X L 3 r S Q R I ( ( X X Z - X X l ) * * Z + ( Y Y Z ~ Y Y l ) * ~ Z + ( Z Z 2 - Z Z L ) * * 2 )  

X L 2 = S Q R T I ( X X Z - X X 3 ) * ~ 2 + / Y Y 2 - V Y 3 ) . + 2 + ( 2 Z 2 - Z Z 3 ) * * 2 )  

X l l = S ~ R T ( ( X X l - X X 3 ~ * * Z + ~ Y Y l - Y Y 3 ~ * * Z + ~ ~ Z l - Z Z ~ ~ ~ * Z ~  

RAD = P 1 / 1 8 O o O  

LAMR = LAHD*RAO 

BETAR = BETAD+RAD 

3 3  



F O R T R A N  I V  PROGRAM LiSTING OF S U B R O U T I N E  B O U N D  

CRAD=CD*RAD 

L A M 0  = [P I /2oO)-CRAD 

THER = T H E D * R A D  

x x l = X x 1 / 1 2 ~ 0  

X X 2 = X X 2 / 1 2 , 0  

xx3=xx3/12oo 

Y Y l = Y Y l  /12.0 

Y Y 2 = Y Y 2  /1200 

Y Y 3 = Y Y 3  /1200 

Z Z l = Z Z l  /1200 

Z Z 2 = Z Z 2  /1200 

2z3=223 /1200 

XNX = ( Y Y 2 - Y Y l l * ( Z Z 3 - 2 Z 1 1  - ( Y Y 3 - Y Y l ) * ( Z 2 2 - Z 2 1 )  

XNY = ( Z Z 2 - Z Z l ) + ( X X 3 - X X l ) - ( Z Z 3 - ~ 2 1 ) * ( X X 2 - X X l )  

X N Z =  ( X X Z - X X l ) * ( Y Y 3 - Y Y L )  - ( X X 3 - X X l ) * t Y Y 2 - Y Y l )  

ABAR = S Q R T I X N X * X N X  + X N Y * X N Y  + X N Z * X N Z )  

A 0 OoS*ABAR 

X L N  = XNX/ABAR 

XMN = X N Y / A B A R  

X N N  = X N Z / A B A R  

OO 300 J * 1 9 6 1  

X J  = 3-1 

L A M S  = L A M 0  - 2 o O * P I * X J / 6 O o  

DELLAM- LAMR-CAMS 

X L S  = - ( C O S ( T H E R ) ~ S I N ( D E L L A M ) + S I N ( B E T A R ) + S I N t T H E R ~ + C O S ~ D E L L A M ~ ~  

34 



FORTRAN I V  PROGRAM LISTING OF SUBROUTINE BOUND 

XMS = SIN(THER)*SIN(DELLAH) - S I N ( B E T A R ) ~ C O S ( T H E R ) * C O S ( D E ~ L A M )  

XNS = COS(BETAR).COS(DELLAM) 

COSALP = XLS*XLN + XMS*XMN + XNS+XNN 

FBAR=lOoO+OELLAM/(2oO*PI) 

IF8 = FBAR 

FB1 = IF6 

FBAR = fBAR - F61 
C 

C BEGIN INTERPOLATION ROUTINE HERE 

C 

OO 71 KT = 1960 

KT 1 = K T  

IF(FBAR.EQ.fAR(KTlII GO TO 72 

KT2 = KT 4 1 

IF(FBARoGTofAR(KTl)oANOoF6ARoLToFAR(KT2))GO TO 73 

71 CONTINUE 

WRITE 4 6 9  6 6 5 )  

665 F O R M A T ~ ~ H ~ ~ l S X , 2 7 H I N T E R P O L A T I O N  NOT POSSIBLE /1H1)  

PAUSE 7777 

72 TINT = TBET(KT1) 

GO TO 77 

73 DIFFO = FARtKT21-FARtKTl) 

OIFFl = FBAR - FAR(KT11 
O I F T  = TBET(KTZ)-TBET1KTl) 

DIFTl = DIFT*DIFFL/DIFFO 
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FORTRAN I V  PROGRAM L I S T I N G  OF SUBROUTINE BOUND 

TINT = T B E T t K T l )  + OIFTL 

77 CONTXNUE 

C 

G END OF INTERPOLATION ROUTINE 

C 

THBAR = T I N T + S O R T I S Q R T ( S Q R T ( C O S ( B E T A R ) I )  1 

T H  = 1.8*TMBAR 

EM IS=SIG*TM*+4 

C 1  = EIOTS+G*COSALP 

C 2  = EIOTS+RMTS * G XNS 

C 3  = EIOTM*EMIS  

C 4  = loO/(EIOTl+SIGI 

IF~XNSoGE.OoO~ANDoCOSALPoLT.0~O)Cl = 000 

I F t X N S o G T o O o 0 ) G O  TO 700 

c 1  = 000 

c2 = 000 

700 CONTINUE 

TEMP = ((loO-XNN)*(C3+C2)/2oO)+Cl 

TlITRI,J)=SPRT(SPRTtC4*TEMP)) 

300 CONTINUE 

RETURN 

EN0 
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FORTRAN I V  PROGRAM LISTING OF SUBROUTINE CALaF3 

FUNCTION F3(1,FlvF4,XNN,ETC.L) 

COMMON l A M ~ B E T A ~ C , T H E T A ~ C V ~ R M l S , G ~ S I G  ~ALPHAtD1,DTEMP 

COHHON T N ~ T C T ( 4 0 ~ 5 ) ~ J ~ 6 0 ~ 6 l ) , A R E A ~ 6 O ~ ~ T C N ( 6 0 ~  

REAL L 

EXTERNAL TC 

PSI =ARCOSI XNNI 

IF(Fl-F4) 511.2 

1 F3=F4 

RETURN 

2 s=-10 

IF(PSf-1-5707963268)3,3,4 

3 CON=o25+o68*PSI*o318309886 

GO TO 18 

4 CON=o64-PSI*oO318309886 

GO TO 18 

5 S T l .  

IF(PSI~lo570796326816~6~7 

6 CON=a54+PSI*o0318309886 

GO TO 8 

7 CON~~93-~68*PS1*~318309886 

0 A=F1 

B=F4 

GO TO 9 

18 A = F 4  

B=F1 
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FORTRAN I V  PROGRAM LISTING OF SUBROUTINE C A L I F 3  

9 F 3 A = I A t B ) / 2 .  

ETCZTC ( I 9  ( F 1 t F 3 A  1 / 2 . )  

D=S*Lo06*CON*L*ALPHA/ETC 

F=Fl-F3A+D*fAESfF3A-F4))**1-25 

1FtF.I l l r l O t  12 

10 F3+F3A 

RETURN 

11 B=F3A 

I F ( A B S ~ A - B l m G E o  011 GO TO 9 

GO TO 10 

12 A=F3A 

IP[ABSIA-B)oGEo 01) GO TO 9 

GO TO 10 

E N 0  



FORTRAN I V  PROGRAM LIST ING OF SUBROUTINE SUR-Fl 

FUNCTION F l (  1,TIME) 

COMMON LAMtBETA,C,THETA,CV,RMTS,GtSIG tALPHA,DTtDTEHP 

COMMON T N , T C T I 4 0 , 5 ) , T t 6 0 , 6 ~ ) , A R E A I 6 0 ] r T C N ( 6 0 )  

IF (TIME.EQ*TIMEl)GO TO 1 

T I M O = A M O D  ( T I M E t T N )  

T IJ=T IMO/DT + l e  

J = T I J  

TIM=TlJ-FLOAT(J) 

TI MEl=lI ME 

1 F i t T ( I , J ) + T I M * ( T ( I , J * 1 ) - T ( I t J )  1 

RETURN 

END 
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FORTRAN I V  PROGRAM L I S T I N G  OF SUBROUTINE CONDO 

40 

FUNCTION T C (  ItTEMP) 

COHMON LAM,BETA,C,THETA,CV,RMTS,~,SIG tALPHA,DTpDTEMP 

COHMON T N , T C T I 4 0 ~ S l ~ T ( 6 0 t 6 1 ) ~ A R € A ~ 6 O ) , T C N ~ 6 0 )  

INTEGER TCN 

TEJ=TEMP/DTEMP+lo 

J=TEJ  

TEM=TEJ-FLOAT(J)  

L L = T C N ( I )  

IF 43-GE-40) GO TO 2 

T C ~ T C T ~ J , ~ ) + T E H + ( T C T ( J + L r L ) - T C T ( J , ~ ) )  

RETURN 

2 TGsTCT ( 4 0 , L )  

RETURN 

END 



FORTRAN I V  PROGRAM L I S T I N G  OF SUBROUTINE HEAT 

FUNCfION QR ( T 1 , K )  

OfMENSION T ( 1 0 2 4 ) r Q { 1 0 2 4 1  

IF ( I B H o E Q o 6 0 2 )  GO TO 4 

I8M=602 

WRITE 46981 

8 F O R H A T ( l H l r 5 0 X e 3 4 H I N P U f  TABLE OF CABIN HEAT RELEACES//30X, 

llOHTfMEIHRSo)e20X~2OHRANDOM D Q / D T ( B T U / H R ) / / )  

R E A D I S ~ L )  TMAX 

DO 7 L = 1 9 1 0 2 4  

7 T f t ) r l o E 3 0  

T f 1 1 =- 1 E 3 0  

DO 2 J 1 2 9 1 0 2 4  

READ ( 5 i , l ) T ( J l  i,Q(J1 

WRITE 1699)  T (  J l  ,Q( J)  

9 F O R M A i I l l X p 2 F 3 0 o 4 )  

1 FORMAT ( 2 F l O o O )  

2 I F  ( f ( J ) o l T o - l o )  GO TO 3 

3 T ( J ) = l . E 3 0  

WRITE (6.91 T t J ) r Q ( J )  

WRITE ( 6 , 9 9 9 )  

999 FORMAT( 1H1)  

4 I=O 

I F  I T 1 . G T . T I  I + 5 1 2 )  1 I = 1 + 5 1 2  

I F  ( T l . G T . T ( 1 + 2 5 6 ) 1  I = 1 + 2 5 6  

I F  ( T 1 o G T o T I I + 1 2 8 ) ) 1 = 1 + 1 2 8  
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FORTRAN I V  PROGRAM L I S T I N G  OF SUBROUTINE HEAT 

I F  ( T l o G T a T ( I +  64))I=I+ 64 

I F  ( T l o G T o T ( I +  32)1I=I+ 32 

I F  ( T l * G T o T ( I +  16))I=I+ 16 

IF ( T l a G T a T ( I +  8 ) ) I = I +  8 

I F  ( T 1 . G T a T ( I +  4)JI=I+ 4 

i F  I T l . G T . T ( I +  2 1 1 I = I +  2 

IF ( T l - G T . T ( I +  l ) J I = I +  1 

I F  ( K e N E a 1 )  GO TO 5 

I F  (K.EQ.0) GO TO 5 

TG=Tt I+1 I - T 1  

I f  ( T G o L T a o 0 0 0 0 1 )  T G = T ( I + 2 1 - T 1  

QR=TG 

RETURN 

5 ~R~Q(I)+(T1-T(i))*(Q(I+l)-~(I))/(T(I+l)-T(I)) 

RETURN 

END 
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FORTRAN I V  PROGRAM L I S T I N G  OF SUBROUTINE ARCOS 

FUNCTION ARCOS ( X N N I  

IF ( X N N o G T o l o E - 1 8 )  GO TO 1 

ARCOS=loS707963268 

RETURN 

1 TPSI=SQRT( L o  / I XNN*XNNI- lo  1 *XNN/ ABS (XNN)  

PSI=ATAN(TPSI) 

I F  (PSIoLToOo) PSI=PSI+ 3.14159265 

ARCOS=PS I 

RETURN 

END 
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CONCLUSIONS 

The foregoing analysis and FORTRAN program enable assessments  

to be  made of the effect of heat fluxes passing through the walls of a rb i -  

t r a r i l y  shaped objects c lose to  the lunar surface.  

the capacity to include heat re leases  f rom machinery, instruments ,  e t c . ,  

which a r e  contained within the envelope. 

The program a lso  has 
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APPENDIX I 

LOGICAL PROCEDURE FOR ANALYZING A MOLAB 

Pre l iminary  

The MOLAB walls a r e  assumed to be composed of any number of 

The thermal  conductivities different materials up to  a maximum of five. 

of these materials (expressed in units of BTU/ft-hr-OF) a r e  assumed to  

be  functions of the absolute temperature  a.nd r r -ust  b e  tabulated. 

thermal  conductivities must  be l isted in  UNIFORM tempera ture  increments ,  

with the first value in the table being the thermal  conductivity a t  0"R. 

tempera ture  interval (called DTEMP) must  be the s a m e  for all mater ia ls .  

Fur thermore ,  the maximum temperature  in  the list must  not exceed 975"R 

and there  must be 40 o r  l e s s  points per  mater ia l  used. Thus, a s  there  

a r e  five numbers pe r  card ,  there  is a maximum of eight c a r d s  per  ma-  

terial (Cards 0 0 4  to 043 included). 

The 

The 

F o r  example, the MOLAB utilizes two different mater ia l s .  

Mater ia l  1 has a thermal  conductivity which i s  a function of temperature .  

Mater ia l  2 has a constant t he rma l  conductivity at 0. 05 BTU/ft-hr-OF. 

It is sufficiently accurate  to tabulate the the rma l  conductivities at 

an  interval  of 100"R. Thus, 

DTEMP = 100. (Utilized in Card 003). 

The temperatures  at which the the rma l  conductivities a r e  l isted a r e  thus: 

O"R, 100"R, 200"R, 300"R, etc. If the table is taken to  900"R.,  i. e . ,  

10  points, then the thermal  conductivities will be l isted as 

Card 004 kl(0) k l (  100) kl(200)  kl( 300) kl(400)  

Card 005 kl(500)  k1(600) k1(700) k1(800) k1(900) 



. 

plus 6 blank ca rds  

Card 012 0. 05 0. 05 0. 05 0. 05 0. 05 

I 

Card 013 0. 05 0. 05 0. 05 0. 05 0. 05 

plus 30 blank ca rds  (i. e . ,  6 blank cards  for  this insulation plus 3 x 8 ca rds  

for  the remaining materials 3, 4 and 5 which a r e  not used). 

Mathematical Description of MOLAB Skin 

Choose a right handed Cartesian coordinate sys tem with the 

positive z axis vertically upward. It is usually most  convenient, but not 

necessary,  to place the x, y plane at  ground level, the positive " X I '  axis 

pointing in  the direction of motion, and the "z "  axis coinciding with some 

ver t ica l  axis of symmetry,  i f  any exists. 

Decide how many points a r e  required to  descr ibe the MOLAB 

surface,  up to a maximum of 32 (i. e. , 60 triangles),  and assign a 

different number to  each point, start ing f rom and including one (1) and 

omitting no numbers.  

Note that the number of tr iangles is determined f rom the number 

of points, p, by 

No. of Triangles,  NTRI = 2p - 4. 

If 25 points a r e  used to descr ibe the body, then NTRI = 46. 

Lis t  the tr iangles in any order ,  which a r e  formed by these points, 

such that when viewed f rom t h e  outside, the numbers run  counterclockwise 

around the triangle. (Cards 077 to 136 inclusive. ) Utilizing Figure 1, 

10, 12, 11 

12, 13,  11 

1, 12, 10 . 
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11 

1 

Figure 1. Il lustration of MOLAB Triangle Notation 
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Decide upon the values of the following pa rame te r s  for  EACH 

triangle: thermal  conductivity number, TCN (i. e . ,  what material com- 

p r i se s  the insulation); the thickness of the insulation in  inches at this 

tr iangle,  L; the mean emissivity of the outer surface of the t r iangle  at 

its own temperature ,  EIOT1; the mean absorptivity of the outer surface of 

the t r iangle  to lunar radiation, EIOTM; the mean absorptivity of the outer 

su r f ace  of the tr iangle to solar  radiation, EIOTS. 

Lis t  all the parameters  associated with the tr iangle in  the o rde r  

(Cards 077 to  136 inclusive) in which they will b e  utilized on the cards .  

JJ J K  J L  EIOTl EIOTM EIOTS TCN L 

Card 077 10 12 11 0.1 0.5 0.6 1 0. 5 

Card 078 12  13 11 0.11 0.49 0. 53 2 0. 75 

plus Cards 079 to  136 inclusive, some  of which will be blank i f  less than 

60 triangles are used. 

Calculate the coordinates x, y, and z of each point i n  inches, and 

a r r ange  a list in  ascending order of point numbers. 

inclusive. ) 

(Cards 045 to  076 

Lf the point numbers a re  1, 2, 3, 4, 5.. . ., the x, y, and z 

coordinates of 1 a r e  33, 34, 41; for  2, they a r e  27, 28, 30; and for 3, 

they a r e  27, 36, and 42. Then the list would be 

Card  045 33 34 41 

Card 046 27 28 30 

Card 047 27 36 42 

plus Cards 048 to  076 inclusive, some of which will be blank is less than 

32 points a r e  used. 
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MQLAB Cab Interior Contents 
~ ~~ 

Decide upon the MOLAB inter ior  atmosphere and calculate o r  

obtain the following: density of the inter ior  gas,  p o r  RHOG lb/ft3 ; 

mean gaseous viscosity, p o r  MUG lb/f t -hr ;  mean gaseous thermal  

conductivity, kg o r  KG BTU/ft-hr-OF; and mean gaseous specific heat, 

g 

g 

o r  C P G  BTU/lb-OF. These t e r m s  partially complete Card 044. cPg 

Calculate the "water equivalent", C, or  CV BTU/"R for  the con- 

tents of the cab. 

form: 

volume f 

over all materials) .  

This must  be  obtained by a subsidiary ca?cu!ation of the  

Cv Mass of a tmosphere X specific heat of a tmosphere at constant 

Mass of ma te r i a l  X specific heat of that ma te r i a l  (summed c 
This is required for Card 002. 

Lunar Environment 

Decide upon the selenographic latitude, A " ,  and the longitude, P o ,  
upon which the MOLAB will  land (Card 002). 

values of the local reflectivity of the surface to  solar  heat, rm (Card 003), 

and the local lunar gravitational acceleration, GM f t / h r 2  (Card 44). It is 

convenient at this stage to decide upon the direction, 8, which the MOLAB 

w i l l  be pointing when it leaves the LEM vehicle, such as 8 = 45" (Northeast) 

(Card 002). 

This location will fix the 

The date of the anticipated landing will allow the value of the 

colongitude of the sun for  00. 00 hours GMT on that date to  be  referenced 

f r o m  "The American Ephemeris and Nautical Almanac", i. e. , "C (Card  

002). Furthermore,  the so la r  constant, G, is evaluated (Card 003). The 

interval  in hours, f r o m  00.00 GMT of the date above, at which the MOLAB 

is exposed to the lunar environment, namely T1, must  be decided now. At 

this instant the environmental t empera ture  inside the MOLAB i s  a l so  

fixed, namely F401"R. (Both T1 and F401 on Card 003.) 
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Random Heat Releases  

Decide how long a f t e r  landing that the heat r e l eases  by the 

instruments  will begin. 

is released,  i. e . ,  what f o r m  does the function of Proj(t)  take. 

this function with an assembly of points. 

TI, is added to whatever t imes  after landing that the heat r e l eases  take 

place. 

Decide also upon the manner in which the heat 

Represent 

Ensure that the time of landing, 

Also ensure that each t ime uniquely defines a heat flux. 

The MOLAB is discharged onto the lunar surface at 13.00 h r  GMT. 

The only heat re leased  internally occurs 17 hours  later when a radio is 

switched on which re leases  energy a t  the r a t e  of 

where  t is t ime in hours f rom the instant of switching on. 

lasts for  3 hours and is then switched off. 

The t ransmiss ion  

A graph of internal  heat re lease against t ime  will  then appear as 

shown in Figure 2. 

A suitable table to  be  accommodated in the p rogram which would 

adequately represent  this curve  would b e  as follows: 

Card TR QR 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

3 0 .  0 

30.25 

30. 5 

30.75 

31. 0 

31.25 

31.5 

31.75 

3 2 .  0 

32.25 

51 

0 .0  

1.52 

5.86 

12.34 

20.0 

27.66 

34.14 

38.48 

40. 0 

38.48 



(table continued) 

Card TR QR 

147 

148 

149 

150 

151 

32. 5 

32.75 

33. 0 

33.001 

. l o .  0 

34.14 

27.66 

20. 0 

0. 0 

Note the value -10.0 has been placed in the time listing of the l a s t  ca rd  

(Card No. 151) so  that the remainder  (Cards 152 to  1160 inclusive) m a y  

be omitted. If the Cards 152 to  1160 were  not omitted, they would be 

required to be blank because the above is the only heat re leased  for  the 

duration of the run. 

P rogram Requirements (All  contained upon Card 001) 

Decide upon the length of the period on the moon that is of 

interest .  

namely T1. 

Add t o  this the period after 00. 00 GMT that the MOLAB lands, 

This fixes the parameter  TE. 

The output is printed first a t  t ime T1, the s t a r t ,  and then in  

uniform increments,  TP. Thus, the print  increment  in  hours  required,  TP,  

may be  ascertained. 

The maximum t ime s tep s i ze  i n  hours  which the p rogram will  

attempt to  make, P, depends upon the f o r m  of the Ggross function. 

general ,  there is  no way of knowing what value to  use  i n  o r d e r  to avoid 

floating point t raps .  Previous analyses have successful ly  used T P  = 8. 

However, usually the printout interval,  TP, is less than the maximum 

time s tep  size which can be tolerated,  and the p rogram will  automatically 

use T P  instead of P. 

In 
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The originators of the refined Runge-Kutta method used he re  

recommend that the dimensionless e r r o r  bounds be  of the o rde r  of one 

hundred t imes  minimum equals maximum, i. e. , maximum e r r o r  bound, 

E2 = minimum e r r o r  bound, El X 100. 

with E2 as  la rge  as 10"; El  = 

The program has been successful  

If the t ime s tep s i ze  cannot be  reduced inside the program to  

such a value that the Runge-Kutta procedure will converge, then the 

program will use  the minimum step s ize  a. n lwz~ber  of t imes,  i r respec t ive  

of e r r o r ,  and attempt to  evade this region. 

p rog ram will at tempt this,  NCI, is an  input parameter .  NCI = 10 has  not 

given trouble to date. 

The number of t imes  the 
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APPENDIX II 

DERIVATION OF LOCAL OUTER 
SURFACE TEMPERATURE, Flij 

Assuming a small plane a r e a  of surface,  dAl, the heat flux into 

the surface direct ly  from the sun is 

0 2  ns S 1 
O ~ C O S E ~  1 

G COS E 6A1 

where G is the so la r  constant; cos E is the cosine of the angle between the 

normal  to  the plane area, 6A1, and the direction of the sun 's  rays;  and ns 

is the direction cosine between the normal to  the moon's sur face  and the 

direction of the sun 's  rays .  Thus, the amount of this energy absorbed is 

O z n s z l  
0 5 C O S &  5 1 clots G cos E 6A1 

where  clots is the absorptivity of the outer surface to  so l a r  radiation. 

The energy t ransmit ted from the moon to  the elementary a r e a  is 

Em Am Fm1 

where  Em is the emissive power of the moon; A, is the a r e a  of the moon; 

and F,, is the shape factor f rom the moon t o  sur face  (1). However, 

A, Fml = 6A1 Fl, . 
Hence, the heat flux f r o m  the moon to  surface (1)  is 

Em 6A1 F1m 

and heat  absorbed is 

E, &Ai F,m eiotm 

where  elotm is the absorptivity of the body at lunar surface temperatures .  

The ref lected sun light f r o m  the s u n  t o  the moon to MOLAB is 
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where rm is the reflectivity of the lunar surface to the so la r  heat. 

the amount absorbed by the surface is 

Hence, 

eiots r m  G nS 6Ai Fun with 0 2 ns S 1 . 
Having neglected re-ref lect ions,  the above three  t e r m s  a r e  the only 

sources  of energy. 

TI.-- - - - - -  h w a r d  heat fiux is equal to the sum of the heat radiated away 

by the body surface,  plus the amount of heat conducted away f r o m  the back 

of the surface. 

quite small compared with the other heat fluxes and can  conveniently be 

neglected. Hence we have 

However, the amount conducted away f rom the surface is 

where F l i j  is the surface tempera ture  of dAl,  u is the Stefan-Boltzmann 

constant and elotl  is the emissivity of surface (1)  at tempera ture  F i i j  . 
When ns 2 0 and cos E < 0, neglect ( 

( )ii and ( )i 

)i, and when ns < 0, neglect 

where  group (i) is neglected i f  ns 2 0 and COS E < 0, (i. e . ,  when the sun 

shines on MOLAB, but not direct ly  on the plane, 6A1) and groups (i) and 

(ii) a r e  neglected i f  ns < 0, (i. e . ,  when the  sun  does not shine on the 

MOLAB). 
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Evaluation of P a r a m e t e r s  i n  Equation 10 i 
A number of the pa rame te r s  i n  Equation 10 requi re  determination. 

These a r e  F1,, ns, cos E and Em. 
I 

Shape Fac tor ,  Flm 

As described ea r l i e r ,  the moon has been assumed to  be  an  infinite 

flat plane within the view of the MOLAB, o r  in par t icular ,  within the view 

of the small a r e a ,  6A1. The shape factor for this  configuration1 is 

where nn is the cosine of the angle between the outward normal  f rom 6A1 

and the normal  f rom the lunar surface. 

outward normal  f rom 6A 1 requi res  coordinating the plane m o r e  specifically. 

Regardless  of how complicated the MOLAB shape is, it will  b e  relatively 

easy  to  pick out a number of points on the surface.  However, the only 

geometr ical  shapes which can be bounded by these points without com- 

plicated compatibility conditions are t r iangles;  consequently, tr iangles 

were  chosen. 

To determine the direction of the 

To ensure that the three  points i n  space which define a t r iangle  

a r e  t r ea t ed  consistently, it was decided to  number them such that when 

the t r iangle  is viewed f rom OUTSIDE the MOLAB, the numbers 1, 2, and 3 

run  COUNTERCLOCKWISE as shown in  F igure  3.  Any one of them may be 

chosen as 1 provided that the above condition is maintained. 

Hence i f  7 1 2  is a vector from 1 to 2 andT=;13 is a vector f rom 1 to  3, 

then a unit normal  perpendicular to  1, 2, and 3 is 

This unit vector ,  when the points are  expressed in  MOLAB centered 

Car t e s i an  coordinates such that the z axis is perpendicular to  the lunar 

sur face ,  has direction cosines:  
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Figure 3. Derivation of MOLAB Triangle  Outward Normal  
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where 

- Nx In x direction, I - - - 
A 

In y direction, mn = - 
'K 

- NZ In z direction, nn - - - 
A 

1 - 
A = ( N x z t  N y Z t  N,')' . 

Note he re  that the a r e a  of the triangle, A, is determined by 

Thus as the axes have been chosen such that the "zl' axis is  perpendicular 

to  the lunar surface,  then nn i s  the direction cosine required for  the shape 

fac tor  in  Equation 1. 

Normal  Solar Direction Cosine, ns 

The normal  so la r  direction cosine, or cosine of the zenith angle, 

is c l ea r ly  a function of t ime depending a s  i t  does upon the motion of the 

moon around the sun and a l so  upon the latitude and longitude of the MOLAB. 

The rotation of the moon around the sun is not uniform but if a period is 

based  on a mean synodic month, then the maximum deviation f rom this is 
3 l e s s  than 27'0 . 

plane is t i l ted f r o m  the ecliptic with an inclination of up to about 1. 75". 

However, fo r  most purposes it i s  sufficiently accurate  to  assume that the 

Another deviation in the moon's motion is that the equatorial 
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sun  rotates uniformly in  the moon's equatorial plane with a period of 

T (one lunar day) and with a direction f r o m  lunar eas t  to lunar west. 

Consequently, the longitude of the sun on the moon, A s ,  at any t ime is 

where A, is the longitude of the sun when time, t = 0. 

constant, A,, it is convenient to r e f e r  to  the "Ephemerisff2.  

f o r  any year tabulates the colongitude, C, of the moon at 00. 00 h r s  (GMT) 

for  each day of t h ~ t  year. The colongitude is the longitude of the morning 

terminator ,  and hence the longitude of the sun, lo, at t ime t = 0 for 

that day is 

To determine the 

The "Ephemeris" 

X 0 = 9 0 -  c .  

It i s  convenient to erect a local coordinate sys tem at the point on 

the moon at  which the MOLAB is oriented. This is done, as shown in  

F igure  4, by taking the 2 2  axis at longitude, X, and latitude, p, in  the 

direction of the local zenith, the x2 axis eas t  and the y2 axis north. 

these coordinates, the direction cosines of the sun (at longitude A s )  a r e  

With 

x2 axis l z  = - s i n  A 1  

z z  axis nz = cos /3 cos AA ( 1  3 )  

where 

A X = X - X ,  . 
However, as the x and y MOLAB fixed axes may not coincide with 

those fixed on the  lunar surface (the z axis will  still coincide), it is neces-  

s a r y  to  introduce an angle, 8,  which de termines  the  rotation of the MOLAB 

x axis f r o m  the lunar surface x2 axis ,  as shown in  F igure  5. 

forming the direction cosines of the unit sun  vector in  Equations 11, 12,  

and 1 3  yields 

Thus t r ans -  
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Figure  4. Orientation of Local Lunar Surface Coordinates 

61 



MOLAB 
Zenith, 
2 2  i& z 

L 

X 

Figure  5. Transformation f r o m  Local Lunar Surface Coordinates 
to MOLAB Fixed Coordinates 

62 



x axis 1 ,  = - (cos 8 s in  A h  t s i n  p sin 8 cos AX) 

y axis ms = s in  8 s in  APX - s in  p cos  8 cos A h  

z axis ns = cos p cos AX . 

Note that, as any excursion the MOLAB will make on the lunar 

sur face  will be sma l l  compared with the circumference of the moon, A 

and /3 a r e  effectively constant. Consequently, to represent  any motion 

of the MOLAB, it i s  only necessary to  represent  the angular displacement, 

8, a s  a function of t ime. 

Cosine of Angle Between Sun and Plane Normal, cos E 

As unit vectors  describing the direction of both the sun and the 

no rma l  of &A1 a r e  available in  MOLAB fixed coordinates,  then cos E is 

eas i ly  determined by the sca la r  product of the two unit vectors ,  thus 

Emiss ive  Power of the Moon, Em 

To determine the emissive power of the moon, a curve was used 

The local time which plots lunar equatorial  temperature  against  time. 

i n  degrees ,  counting f rom local lunar moon, a t  the longitude, A, in  

question is determined by the instantaneous longitude of the sun, with 

r e spec t  t o  A, namely AX. This term,  AX, frequently has to  be converted 

t o  a phase fract ion as many t ime bases a r e  expressed as such. The con- 

vers ions  a r e  of the form,  phase fraction, 

Ah A h  
f = -  

360 2lr or  - . 

Thus, f r o m  the phase fraction, the instantaneous lunar equatorial  

t empera tu re  is determined. To determine the tempera ture  at any other 

6 3  



latitude, p, the one sixth power of cos p gives the tempera ture  variation 

with sufficient accuracy for  all latitudes up to 45". 

at latitude is 

Thus, the tempera ture  

T- = Tp,o C O S  '/6 p 
m 

As most  lunar tempera tures  a r e  in  degrees  Kelvin, TK is converted to 

degrees  Rankine by 

Tm = 1 . 8  X Tx . 

However, because the moon effectively radiates as a black body a t  its 

own temperature ,  the emissive power of the moon may be calculated as 

Emissive Power,  Em = u X Tm 4 . 

Substitution of the above t e r m s  i n  Equation 1 enables it to be 

solved for  the MOLAB adiabatic surface temperature ,  Flij , namely 

' I  
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